REPORT ON

HYDROGEOLOGICAL STUDIES AND GEOPHYSICAL

INVESTIGATIONS FOR SITING 1No. BOREHOLE FOR

MECHANISATION

AT SIERRA LEONE BOTTLING COMPANY LIMITED

IN FREETOWN

Prepared by:

EDAL DRILLING COMPANY

49 WATERLOO STREET

FREETOWN

SIERRA LEONE

TEL:

APRIL 2010

Borehole Siting Report

TABLE OF CONTENT

	PAGE
1. INT	RODUCTION
2. BAC	CKGROUND OF THE STUDY AREA 1
3.1 3.2 3.2.1 3.2.1	Geophysical Survey
4.1 4.1.	2 Vertical Electrical Sounding (VES)
5. COI 5.1 5.2	NCLUSION AND RECOMMENDATION
FIG 1A:	Resistivity Profiling results and corresponding responds curves along Profile A7
FIG 2A:	SCHLUMBERGER VES & MODEL AT A12/S2 8
	SCHLUMBERGER VES & MODEL AT A12/S28
FIG 2B:	SCHLUMBERGER VES & MODEL AT A21/S110
Table 1:	The rank list of VES points in order of preference for test drilling 5

Edal Drilling Company Ltd.

i

1

1. INTRODUCTION

Sierra Leone Bottling Company Limited is located Dwarzak, Freetown. Though the Company already has two boreholes at their premises, it needs a third one as the two are not enough to meet their daily production and other activities.

In the quest to search for a groundwater, the authorities of Sierra Leone Bottling Company Ltd engaged Edal Drilling and Consultancy Company Limited to undertake a Hydrogeological Studies and geophysical investigations as well as drilling of 1No. borehole to add to the other two on the site.

The studies were, among others, to provide enough data and information to be used in assessing the possibility of striking fresh underground water in the alternative of a borehole in the site. This report documents the work carried out at the site on the April 2010.

2. BACKGROUND OF THE STUDY AREA

Background information was obtained by means of a study consisting of the acquisition of previous work (Geophysics, Drilling logs, Geo-electrical logs of the area) carried out in and around the study area, geological and Topographical Maps of the area. Based on that, a siting strategy was deployed.

The topography is generally undulating.

Geologically, the area is composed of a layer complex sand clay and gabbro. The rocks in Duraplast Residency have acquired variable secondary porosity and permeability through jointing, fracturing and shearing along which decomposition and weathering have taken place.

Hydrogeologically, the rocks in the area have high- medium water potential since the rocks have undergone various degree of tectonic activities that have resulted in fracturing and jointing in the rocks. The various rock units in the area include; Gabbro, Anortosite etc.

Edal Drilling Company Ltd.

3. FIELD WORK

3.1 Field Reconnaissance Survey

The aim of the reconnaissance survey was to select target areas for geophysical survey. The field reconnaissance survey was undertaken together with the Technical Manager (Kartout Nabil) and the Electrical Supervisor (James Kargbo). The reconnaissance took place on April 10, 2010 and the activities that were carried out involved;

- Geomorphologic survey of areas not identified during desk study but could be significant in hydrogeological studies; and
- Demarcation of area for traverse lines for geophysical survey.

3.1.1 Selection of Traverse Lines

Traverse line was run on the basis of geomorphologic and physical features such as vegetation, stream direction as well as any significant hydrogeological features encountered in the premises. The traverse line was perpendicular to the major strike direction of the geological formation of the area.

One traverse line was run in the NE-SW direction. The rational behind the selection of this traversing trend was to intercept the major trend of NW-SE fractures in the area.

3.2 Geophysical Survey

The Geophysical survey consisted mainly of Electrical Resistivity Profiling and Vertical Electrical Sounding (VES) using DZD 6A Multifunction Electrical meter.

3.2.1 Resistivity Profiling

Resistivity Profiling was carried out along the traverse line using the recommended Schlumbeger configuration. Two depths of 19m and 40m were investigated, using the electrode separations of (L/2, a/2) given by 19m, 0.5m and (40m, 5.0m). The electrode separations (19m, 0.5m) and (40m, 5.0m) were assumed to probe the weathered layer and bedrock respectively (WRRI, 1994).

3.2.2 Selection of VES Points

The profiling results were plotted on a linear scale, and preliminary interpretation was done on the field to select the best anomalous points for Vertical Electrical Sounding

Edal Drilling Company Ltd.

(VES). The VES points were restricted to areas where relatively lower apparent resistivities were recorded on the horizontal profiles.

Two (2) points were selected for VES. The VES points were marked with pegs with inscription on them.

3.2.3 Vertical Electrical Sounding (VES)

Vertical Electrical Sounding (VES) was carried out with the aim of determining the formation resistivities and the depth to bedrock, as well as finding the possibility of obtaining fracture at depth the sounding points.

The Schlumberger electrode configuration and the expanding procedure were used for the VES. Data control was ensured by plotting the VES results on the field as VES measurements were in progress. Unreasonable values that registered high standard deviation (sd) greater than unity were rejected and sounding repeated at the same spot several times until reasonable values were recorded. Changing the position of the electrodes and varying the current input ensured this.

4. DATA ANALYSIS AND INTERPRETATION

4.1 Geophysical Survey

The electrical resistivity profiling result and its corresponding response curves is presented in Fig 1A, whiles the Vertical Electrical Sounding results and corresponding curves are presented in fig 2A-2B.

4.1.1 Resistivity Profiling

The interesting feature of resistivity profiling interpretation is the identification and selection of anomalous points or zones. These anomalous points or zones in this area are generally resistivity values below the average resistivity values along a given profile line.

On the average, the measured apparent resistivity values for the (19m, 0.5m) and (40m, 5.0m) were medium-low. Values ranging between 69.50hm-m and 1470hm-m, and averaging 1080hm-m were recorded.

The general high to medium resistivity values recorded in the area could indicate shallow overburden thickness and slight weathering as well as fracture development conditions in the area. The groundwater potential in this area could be variable ranging between high and medium.

The measured apparent resistivity values range between 69.9ohm-m and 147.5ohm-m with a mean of 108ohm-m for the (19m, 0.5m) separation. For the (40m, 5.0m) separation, the measured apparent resistivity values were in the range of 79ohm-m and 106ohm-m with a mean of 91hm-m. In general, high resistivity values were recorded with the (40m, 5.0m) than the (19m, 0.5m) separation along the traverse. Well-defined anomalous points of low resistivity values were selected for Vertical Electrical Sounding.

4.1.2 Vertical Electrical Sounding (VES)

Based on the results of the resistivity profiling, the points A12m and A21 were selected for VES. The VES results and response curves at the two points are presented in Fig 2A - 2B. The interpretation was carried out using the RESIST software.

4.2 Selection of Promising Points

The selection of points for test drilling at Sierra Leone Botling Company Limited been done by considering the thickness of the various layers of the subsurface structure and their corresponding apparent resistivity from the analyses of VES results as well as the behaviour of the anomalous points during the profiling.

Borehole Siting Report

The ranking of the VES points in order of preference for test drilling is presented in table 1 below.

RANK	VES POINT	LAYER	DEPTH (m)	THICK-NESS (m)	APPARENT RESISTIVITY (Ohm-m)	POSSIBLE WATER ZONES (m)	RANKING	MAX DRILLING DEPTH (m)
1	A12/S2	1 2 3	1 6 -	1 5 -	160 380 30	25-30 45-55		60
2	A21/S1	1 2 3	1 25 34 -	1 24 10 -	115 400 5	20-30 52-60	1 st	60

Table 1: The rank list of VES points in order of preference for test drilling

Edal Drilling Company Ltd.

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the analyses of the entire results, and in line with the aims of the study, the drawn conclusions are;

- the study area is composed of the Freetown complex
- the formation has undergone slight degree of weathering which control groundwater occurrence and accumulation.
- Groundwater potential could be medium to low.

5.2 Recommendation

In this regard, it is recommended that,

- test drilling could be carried out at A21/S1 with A12/S2 as alternative site to confirm the existence of aquifer system.
- the maximum drilling depth at this site should be 60m below ground level. However, the supervisor may exceed this based on the field conditions.
- Hydrofracture may be deployed when the yield is low to increase the airlift yield.
- both physico-chemical and bacteriological test should be carried out on the borehole water samples from completed well.

Edal Drilling Company Ltd.

FIG 2A: Resistivity Profiling results and corresponding responds curves along Profile A

Edal Drilling Company Ltd.

FIG 3A: SCHLUMBERGER VES & MODEL AT A12/S2

SIERRA LEONE BOTTLING CO.LTD. - A12/S2

	nt : SIERRA L ct : Private		1	Community : SIERRA LEONE BOTTLING CO. Sounding Number : A12/S2								
Distri		the statistics	13. 30 To									
	te : 10/04/201	10		Coordinates East : Coordinates North :								
Field Operate												
Interpreted I					G		: GPS datu	m				
Interpreted	oy: OBENG			Azimuth : 135								
		So	chlum berg	ger Array '	VES Field	Data						
AB/2 (m)	MN(m) 1.0 (MN-1)	MN(m) 10 (MN-2)	MN(m) 30 (MN-3)	ΔV I (MN-1)	Δ <u>V</u> I (MN-2)	ΔV I (MN-3)	ρ (ohm-m) <i>(MN-1)</i>	ρ (ohm-m) (MN-2)	р (ohm-m (<i>MN-3</i>)			
1.0	2.4			66.0480			155.6					
2.0	11.8			21.6660			255.2					
3.0	27.5		1	10.5980			291.3					
4.0	49.5			5.6918			281.6					
5.0	77.8			3.3509			260.5					
6.0	112			2.3150			260.0	10000				
8.0	200			0.9531			190.9					
10.0	313			0.5228			163.8					
15.0	706	63		0.1291	2.8018		91.2	176.0				
20.0	1,256	118		0.0665	1.0352		83.5	122.0				
25.0	1,963	188		0.0182	0.3604		35.7	67.9				
30.0	2,827	275		0.0091	0.2676		25.7	73.6				
35.0	3,848	377		0.0053	0.2017		20.4	76.0				
40.0		495			0.1698			84.0				
50.0		778			0.1323			102.9				
60.0		1,123			0.0952			106.9				
70.0		1,532			0.0601			92.0				
80.0												
100.0												
125.0								-				
150.0												
175.0												
200.0												

Edal Drilling Company Ltd.

Borehole Siting Report

Client : SIERRA LEONE BOTT. Project : Private District : Date : 10/04/2010 Field Operator : OBENG Interpreted by : OBENG

Data

Measured

Apparent

Resistivity

(Ohm-m)

155.6

255.2

291.3 281.6

260.5 260.0

190.9

163.8

91.2

83.5

35.7 25.7 20.4 176.0

122.0

67.9 73.6 76.0

84.0

102.9

106.9

92.0

Modelled

Apparent

Resistivity

(Ohm-m)

171

209

239 257

263 259

235

200

121

51

40

35

121

74

51 40

35

33

32

31

31

3

AB/2

(m)

1.0 2.0 3.0

4.0 5.0 6.0

8.0

10.0

15.0 20.0 25.0

30.0 35.0

15.0

20.0

25.0

30.0 35.0

40.0

50.0

60.0 70.0

Community : SIERRA LEONE BOTTLING CO.L Sounding Number : A12/S2 Coordinates East : Coordinates North : GPS Datum : GPS datum Azimuth : 135

Model

Model Error

245

2,176 2,704 614

5 0

1,937 1,321

903

83

234

205 216

3,007

2,263

1,123

2,613 5,087 5,730

3,725

SIERRA LEONE BOTTLING CO.LTD. - A12/S2

GeoVES 1.3

П

100

MS Excel based modelling of Vertical Electrical Soundings in the Schlumberger Array using Gosh linear filters 10,000 Included in Model (1=yes) Apparent Resistivity (Ohm-m) 1 σ TTT 1 10 TH 1 1 1 10 100 AB/2 (m)

Model Layer	Resistivity (Ohm-m)	stivity nge	odel Parame Thickness (m)	Thick	kness	Depth	Depth
1	160	T	1 1	Ra	nge	(m)	Range
2	380					1	T
3	30	 	4			5	
4		 					
5		 					
6		 					
7		 					
8		 					

Geoelectrical Model

Edal Drilling Company Ltd.

FIG 2B: SCHLUMBERGER VES RESULTS & MODEL AT A21/S1

SIERRA LEONE BOTTLING CO. LTD - A21/S1

Second Se	nt : SIERRA ct : Private	LEUNE BU	11.		C	ommunity	: SIERRA L	EONE BOT	TLING CO			
Distri			inter .		and the second se	g Num ber						
	te : 10/04/20	40		Coordinates East : Coordinates North :								
Field Operato		10										
				N. A. A.	GPS Datum : GPS datum							
Interpreted b	DY: OBENG					Azimuth	: 135°					
		Sc	hlum ber	ger Array	VES Field	Data						
AB/2 (m)	MN(m) 1.0 (MN-1)	MN(m) 10 (MN-2)	MN(m) 30 (MN-3)	ΔV I (MN-1)	ΔV I (MN-2)	ΔV I (MN-3)	ρ (ohm-m) <i>(MN-1)</i>	ρ (ohm-m) (MN-2)	ρ (ohm-m) (MN-3)			
1.0	2.4			48.5540		1	114.4	(1011 4-2)	(10114-3)			
2.0	11.8			16.4220			193.5					
3.0	27.5			7.1811			197.4					
4.0	49.5			4.7062		New York	232.9					
5.0	77.8			3.5116			273.0					
6.0	112			2.3377			262.6					
8.0	200			0.9967			199.6					
10.0	313			0.7261			227.5					
15.0	706	63		0.5518	1.9116		389.6	120.1				
20.0	1,256	118		0.0918	0.9479		115.3	111.7				
25.0	1,963	188		0.0345	0.3217		67.7	60.6				
30.0	2,827	275		0.0201	0.1800		56.8	49.5				
35.0	3,848	377		0.0076	0.0907		29.2	34.2				
40.0		495			0.0583			28.8				
50.0		778		and the second	0.0064			5.0				
60.0		1,123			0.0057			6.4				
70.0		1,532			0.0032			4.9				
80.0												
100.0												
125.0												
150.0												
175.0												
200.0												

Edal Drilling Company Ltd.

Borellunite Stating Report

(TCC///www.endites.ff/fillengeneral.initializations.initializations.initialization)

THYPECONOMICALLEL: I THYPEYYYYYYYYYYYYYY

THIN CHERKG

International International

TELesetterristte:

Sierra Leone Bottling Co. Ltd, Freetown.

0	latia		Model ~	der 1	
((im))	Measured Apparent Resistivity (Ohm-m)	Modelled Apparent Resistivity (Ohm-m)	Model Error	Included in Model (1=yes)	
1.0	114.4	126	140	1	
2.0	193.5	167	725	1	
3.0	197.4	204	49	1	
4.0	232.9	232	1	1	
5.0	273.0	250	538	1	
6.0	262.6	261	4	1	
8.0	199.6	264	4,198	1	
10.0	227.5	251	561	1	
15.0	389.6	186	41,451	1	
20.0	115.3	121	31	1	
25.0	67.7	74	40	1	
30.0	56.8	44	157	1	
35.0	29.2	27	7	1	
15.0	120.1	186	4,344	1	
20.0	111.7	121	84	1	
25.0	60.6	74	179	1	
30.0	49.5	44	27	1	
35.0	34.2	27	59	1	
40.0	28.8	16	156	1	
50.0	5.0	8	7	1	
60.0	6.4	5	1	1	
70.0	4.9	5	0	1	
	_				

			M	odel Parame					
Model Layer	Resistivity (Ohm-m)	Resistivity Range		(Thickness (m)	Thickness Range		Depth (m)	Depth Range	
	115			1			1		
2	400			6			1		
3	5					11	+		-
4							+		-
5							+		-
6									-
7							+		-
8						Company of the	1		-

Geoelectrical Model

Edal Drilling Company Ltd.