REPORT ON

HYDROGEOLOGICAL STUDIES AND GEOPHYSICAL INVESTIGATIONS FOR SITING 1No. BOREHOLE FOR MECHANISATION AT THE

CAMP OF LONDON MINING COMPANY, LUNSAR

Prepared by:

EDAL DRILLING COMPANY

49 WATERLOO STREET

FREETOWN

SIERRA LEONE

TEL: 033993727

JULY, 2010

TABLE OF CONTENT

	PAGE
1. INTRODUCTION	***********
8	
2. BACKGROUND OF THE STUDY AREA	******
<i>L</i> . D . L	
3. FIELD WORK	
 FIELD WORK 3.1 Field Reconnaissance Survey 	
3.1 Field Reconnaissance Survey 3.1.1 Selection of Traverse Lines	
 3.1.1 Selection of Traverse Lines 3.2 Geophysical Survey 	
3.2 Geophysical Survey 3.2.1 Resistivity Profiling	
3.2.1 Resistivity Profiling 3.2.2 Selection of VES Points	
 3.2.2 Selection of VES Points 3.2.3 Vertical Electrical Sounding (VES) 	
J.M.J (0101011	
	4
4. DATA ANALYSIS AND INTERPRETATION	4
 4. DATA ANALYSIS AND INTERPRETATION 4.1 Geophysical Survey Brofiling 	4
4.1 Geophysical Survey 4.1.1 Resistivity Profiling	
 4.1.1 Resistivity Profiling	<u>A</u>
 4.1.2 Vertical Electrical Sounding (VES) 4.2 Selection of Promising Points	
4.2 Selection of Frence 2	
	6
5. CONCLUSION AND RECOMMENDATION	
5. CONCLUSION AND RECOMMENDATION 5.1 Conclusion	
5.1 Conclusion5.2 Recommendation	***************************************
5.2 Recommendation	
	Jame Drofile A 7
FIG1A: Resistivity Profiling results and corresponding responds cu	irves along I tottle IX /
FIUTA. Resistivity Frommes	\$
FIG 2A: SCHLUMBERGER VES & MODEL AT A30/S1	
FIU 2A. BUILDINIDERCE	c
FIG 2B: SCHLUMBERGER VES & MODEL AT A25/S2	
FIU 2D. SUILUINDERCOLLE	
	1 *11* 5

 Table 1:
 The rank list of VES points in order of preference for test drilling
 5

1. INTRODUCTION

London Mining Company (LMC) CAMP is located at Lunsar. The authorities in charge of the mines want to explore the possibility of getting good source of groundwater for both commercial and domestic use.

In the quest to search for groundwater, the authorities of LMC engaged Edal Drilling Company Limited to undertake Hydrogeological Studies and geophysical investigations together with drilling of 1No. borehole at the site.

The studies were, among others, to provide enough data and information to be used in assessing the possibility of striking fresh underground water in the alternative of a borehole at the site. This report documents the work carried out at the site on July 1, 2010.

2. BACKGROUND OF THE STUDY AREA

Background information was obtained by means of a study consisting of the acquisition of previous work (Geophysics, Drilling logs, Geo-electrical logs of the area) carried out in and around the study area, geological and Topographical Maps of the area. Based on that, a siting strategy was deployed.

Geologically, the area is composed of Marampa formation which is a low grade Archean age greenstone belt consisting of banded ironstone and mafic to felsic schistose volcanic sediments. The rocks at this vicinity have acquired variable secondary porosity and permeability through jointing; the fracturing and shearing along which decomposition and weathering have taken place.

Hydrogeologically, this formation is interpreted to have good to reasonable yield, since rocks units here (Schluter T. Wright EP and Akuwumi) have undergone various degrees of tectonic activities that have resulted in fracturing and jointing in the rocks. The various rock units in the area include; ironstone and Schist, gneiss and mafic to felsic schistose volcanic sediments

3. FIELD WORK

3.1 Field Reconnaissance Survey

The aim of the reconnaissance survey was to select target areas for geophysical survey. The field reconnaissance survey was undertaken on July 1, 2010 and the activities that were carried out involved;

- Geomorphologic survey of areas not identified during desk study but could be significant in hydrogeological studies; and
- Demarcation of area for traverse lines for geophysical survey.

3.1.1 Selection of Traverse Lines

Traverse line was run on the basis of geomorphologic and physical features such as vegetation, stream direction as well as any significant hydrogeological features encountered in the premises. The traverse line was perpendicular to the major strike direction of the geological formation of the area.

One traverse line was run in the NE-SW direction. The rational behind the selection of this traversing trend was to intercept the major trend of NW-SE fractures in the area.

3.2 Geophysical Survey

The Geophysical survey consisted mainly of Electrical Resistivity Profiling and Vertical Electrical Sounding (VES) using SAS 1000/4000 DZD 6A Multifunction Electrical meter.

3.2.1 Resistivity Profiling

Resistivity Profiling was carried out along the traverse line using the recommended Schlumbeger configuration. Two depths of 19m and 40m were investigated, using the electrode separations of (L/2, a/2) given by 19m, 0.5m and (40m, 5.0m). The electrode separations (19m, 0.5m) and (40m, 5.0m) were assumed to probe the weathered layer and Bed rock respectively (WRRI, 1994).

3.2.2 Selection of VES Points

The profiling results were plotted on a linear scale, and preliminary interpretation was done on the field to select the best anomalous points for Vertical Electrical Sounding (VES). The VES points were restricted to areas where relatively lower apparent resistivities were recorded on the horizontal profiles.

Edal Drilling Company Ltd.

Two (2) points were selected for VES. The VES points were marked with pegs with inscription on them.

3.2.3 Vertical Electrical Sounding (VES)

Vertical Electrical Sounding (VES) was carried out with the aim of determining the formation resistivities and the depth to bedrock, as well as finding the possibility of obtaining fracture at depth the sounding points.

The Schlumberger electrode configuration and the expanding procedure were used for the VES. Data control was ensured by plotting the VES results on the field as VES measurements were in progress. Unreasonable values that registered high standard deviation (sd) greater than unity were rejected and sounding repeated at the same spot several times until reasonable values were recorded. Changing the position of the electrodes and varying the current input ensured this.

4. DATA ANALYSIS AND INTERPRETATION

4.1 Geophysical Survey

The electrical resistivity profiling result and its corresponding response curves is presented in Fig 1A, whiles the Vertical Electrical Sounding results and corresponding curves are presented in fig 2A- 2B.

4.1.1 Resistivity Profiling

The interesting feature of resistivity profiling interpretation is the identification and selection of anomalous points or zones. These anomalous points or zones in this area are generally resistivity values below the average resistivity values along a given profile line.

On the average, the measured apparent resistivity values for the (19m, 0.5m) and (40m, 5.0m) were medium-high. Values ranging between 2020hm-m and 2008ohm-m, and averaging 11710hm-m were recorded.

The general high to medium resistivity values recorded in the area could indicate shallow overburden thickness and slight weathering as well as fracture development conditions in the area. The groundwater potential in this area could be variable ranging between high and medium.

The measured apparent resistivity values range between 2020hm-m and 4060hm-m with a mean of 3040hm-m for the (19m, 0.5m) separation. For the (40m, 5.0m) separation, the measured apparent resistivity values were in the range of 7430hm-m and 20080hm-m with a mean of 14380hm-m. In general, high resistivity values were recorded with the (40m, 5.0m) than the (19m, 0.5m) separation along the traverse. Well-defined anomalous points of low resistivity values were selected for Vertical Electrical Sounding.

4.1.2 Vertical Electrical Sounding (VES)

Based on the results of the resistivity profiling, the points A25m and A30m were selected for VES. The VES results and response curves at the three points are presented in Fig 2A -2B. The interpretation was carried out using the RESIST software.

4.2 Selection of Promising Points

The selection of points for test drilling at LMC Camp is done by considering the thickness of the various layers of the subsurface structure and their corresponding apparent resistivity from the analyses of VES results as well as the behaviour of the anomalous points during the profiling.

The ranking of the VES points in order of preference for test drilling is presented in table 1 below.

RANK	VES POINT	LAYE R	DEPTH (m)	THICK-NESS (m)	APPARENT RESISTIVITY (Ohm-m)	POSSIBLE WATER ZONES (m)	RANKING	MAX DRILLING DEPTH (m)
1	A30/S1	1 2 3	0.8 3.8	0.8 3.0	8600 1400 250	20-30 35-45		70
2	A25/S2	1 2 3 4	1 6 20 -	1 5 14 -	1000 3200 200 1000	15-25 30-40	1 st	70

Table 1: The rank list of VES points in order of preference for test drilling

Edal Drilling Company Ltd.

5. CONCLUSION AND RECOMMENDATION

5.1 Conclusion

Based on the analyses of the entire results, and in line with the aims of the study, the drawn conclusions are;

- the study area is composed of the Marampa formation
- the formation has undergone moderate-slight degree of weathering which control groundwater occurrence and accumulation.
- Groundwater potential could be good to reasonable.

5.2 Recommendation

In this regard, it is recommended that,

- test drilling could be carried out at A25/S2 to confirm the existence of aquifer system.
- the maximum drilling depth at this site should be 70m below ground level. However, the supervisor may exceed this or go below this depth based on the field conditions.
- both physico-chemical and bacteriological test will be carried out on the borehole water samples from completed well.

FIG 1A: Resistivity Profiling results and corresponding responds curves along Profile A

Edal Drilling Company Ltd.

FIG 2A: SCHLUMBERGER VES & MODEL AT A30/S1

*Client	: London M	Aining Co.			Community : LMC Camp-Lunsar						
	: Private		and the	Sounding Number : A30/S1							
District				Coordinates East :							
	. 01-06-201	0		(coordinate	es North :					
					GP	S Datum :					
Field Operator						Azimuth :	145				
Interpreted by	: Obeing	0	hlumbarr	ger Array V	ES Field	ata					
			niumberg				1		ρ		
AB/2	MN(m)	MN(m)	MN(m)	ΔV	ΔV		ρ (ohm m)	ρ (ohm-m)			
(m)	1.0	10	30	I	1		(MN-1)	(MN-2)	(MN-3)		
	(MN-1)	(MN-2)	(MN-3)	(MN-1)	(MN-2)	(MN-3)	821.7	(14114-27)	(
1.0	2.4	<u> </u>	ļ	348.7400			1151.7				
2.0	11.8		ļ	97.7560			1223.6				
3.0	27.5		ļ	44.5110			1234.6				
4.0	49.5		ļ	24.9520			1022.5				
5.0	77.8			13.1510			1005.6				
6.0	112		ļ	8.9540			837.0				
8.0	200			4.1790			603.9				
10.0	313			1.9270	7 0040		313.5	453.7			
15.0	706	63		0.4440	7.2210		231.1	534.6	1		
20.0	1,256	118	ļ	0.1840	4.5380 2.1950		202.2	413.7			
25.0	1,963	188	Ļ	0.1030	1.3230		186.6	363.7			
30.0	2,827	275		0.0660	0.7940		161.6	299.3			
35.0	3,848	377		0.0420	0.5280		101.0	261.3			
40.0		495						316.5			
50.0		778			0.4070			358.3			
60.0		1,123			0.3150	-					
70.0								-	-		
80.0											
100.0						-					
125.0											
150.0											
175.0											
200.0											
						-					

A30/S1

Edal Drilling Company Ltd.

Borehole Siting Report LMC Camp, Lunsar Client : London Mining Co. Community : LMC Camp-Lunsar LMC Camp-Lunsar - A30/S1 Project : Private Sounding Number : A30/S1 District : Coordinates East : Date: 01-06-2010 Coordinates North: GeoVES 1.3 GPS Datum : Field Operator : Obeng MS Excel based modelling of Vertical Electrical Soundings Interpreted by : Obeng Azimuth: 145 in the Schlumberger Array using Gosh linear filters -Data Model 10,000 # Measured Modelled Included in AB/2 Apparent Apparent Model Error Model (m) Resistivity Resistivity (1=yes) (Ohm-m) (Ohm-m) TIIII 821.7 9,527 11,150 13,845 18,478 515 1,547 2,224 995 8,310 6,936 1.0 Apparent Resistivity (Ohm-m) 2.0 1,046 1,106 1,099 1,045 966 790 635 1.000 1223.6 3.0 4.0 5.0 1022 6.0 1005.6 TITT 8.0 837.0 10.0 15.0 20.0 313.5 231.1 202.2 405 314 281 268 262 c6,595 6,595 10,138 2,406 48,515 17,701 25.0 30.0 35.0 100 186.6 15.0 453.7 405 20.0 25.0 30.0 35.0 TIIII 534.6 314 281 413.7 363.7 268 262 260 256 254 9,199 299.3 1,372 10 40.0 261.3 3 3,600 10,773 316.5 50.0 10 100 10 1 AB/2 (m) 60.0 358.3 Model Parameters Model Resistivity Resistivity Thickness Thickness Depth Depth Layer (Ohm-m) Range (m) Range (m) Range 0.8 0.8 1400

Root Mean Squared Error:

95

D:Documents and Settings/Cyril Greenwood/My Documents/LMC CAMP BOREHOLE DRILLING Folder/[LMC CAMP AS0-SLxls]Data

Geoelectrical Model

Edal Drilling Company Ltd.

FIG 2B: SCHLUMBERGER VES RESULTS & MODEL AT A25/S2

1				Community : LMC Camp-Lunsar							
Client	London M	lining Co.									
Project	: Private			Sounding Number : A25/S2							
District				Coordinates East :							
Date	: 01-06-201	D		Coordinates North :							
Field Operator				GPS Datum :							
Interpreted by					ł	Azimuth :	145				
		Sc	hlumberg	ger Array V	ES Field D	ata					
	MN(m)	MN(m)	MN(m)	ΔV	ΔV	ΔV	ρ	ρ	ρ		
AB/2	1.0	10	30	1	1	1		(ohm-m)	and the second second second second		
(m)	(MN-1)	(MN-2)	(MN-3)	(MN-1)	(MN-2)	(MN-3)	(MN-1)	(MN-2)	(MN-3)		
1.0	2.4	(1011 -)		467.5500			1101.6				
2.0	11.8			143.1200			1686.1				
3.0	27.5			90.1200			2477.3				
	49.5			61.4440			3040.3				
4.0 5.0	77.8			35.0430			2724.7				
	112			9.9060			1112.6				
6.0 8.0	200			4.9100			983.4				
10.0	313			2.8860			904.4				
10.0	706	63		0.9980	18.7850		704.7	1180.3			
20.0	1,256	118	•	0.4360	9.5480		547.6	1124.8			
25.0	1,963	188		0.2840	4.2170		557.4	794.9			
30.0	2,827	275	-	0.1060	2.2240		299.6	611.4			
35.0	3.848	377		0.0782	1.6100		300.9	607.0			
40.0		495			1.0170			503.2			
50.0		778	-		0.9220			716.9			
60.0		1,123			0.5470			614.3			
70.0											
80.0		-									
100.0											
405.0									-		
125.0											
175.0											
200.0											
200.0											

Edal Drilling Company Ltd.

Data

AB/2

(m)

1.0

2.0

3.0 4.0

5.0

6.0

8.0

10.0

15.0 20.0 25.0 30.0

35.0 15.0 20.0 25.0 30.0 35.0

40.0

50.0

60.0

Measured

Apparent

Resistivity

(Ohm-m)

1686.1

2477.3 3040.3

2724.7

1112.6

983.4

904.4

704.7 547.6 557.4

299.6

300.9

1180.3 1124.8

794.9 611.4 607.0

503.2

716.9

614.3

Modelled

Apparent

Resistivity

(Ohm-m)

1,093

1,418 1,714 1,918 2,043 2,102 2,070 1,912 1,359 915 649

512 452

1,359 915

458

502

LMC Camp, Lunsar

GeoVES 1.3

in the Schlumberger Array using Gosh linear filters

LMC Camp-Lunsar - A25/S2

Client : London Mining Co. Community : LMC Camp-Lunsar Project : Private Sounding Number : A25/S2 District : Coordinates East: Date : 01-06-2010 Coordinates North: Field Operator : Obeng **GPS Datum :** MS Excel based modelling of Vertical Electrical Soundings Interpreted by : Obeng Azimuth: 145 2.00

Included in

Model

(1=yes)

Model

Model Error

76 71,630 583,058 1,259,440 465,223 978,236

1,181,416 1,014,659

428,437 135,193 8,391

45,015 22,873 32,011 43,936 21,280 9,913 23,972 4,600 67,196 12,680

10,000 -							
(ur-ulio) (things			000				
Apparent Resistivity (Ohm-m)							
10 +		10		3/2 (m)	100		

		N	lodel Paramet	ters		
	Resistivity (Ohm-m)	Resistivity Range	Thickness (m)	Thickness Range	Depth (m)	Depth Range
1	1000		1		1	
2	3200		5		6	
3	200		14	l	20	I
4	1000		1		1	
5					1	1
6		1			1	1
7						
8				Î	1	

Geoelectrical Model

Edal Drilling Company Ltd.

EDAL DRILLING COMPANY LIMITED

1 NO. BOREHOLE DRILLING REPORT AT LMC CAMP, LUNSAR GEOPHYS. REF. NO. A25/S2

JUNE, 2010

TABLE OF CONTENT

- 1. Borehole Drilling Log
- 2. Borehole Drilling Record
- 3. Borehole Drilling Development form
- 4. Aquifer Test Pumping Results
- 5. Aquifer Quality Analysis Results
- 6. Recommendation

Borehole Drilling log

DAILY LOG FOR DRILLING SUPERVISION

CONTRACT				WELL NO .:	EDC/LMCBH-0	DATE					
LOCATION/C	ODE			1	U	CONTRACTOR		2/7/2010			
	START OF	END OF			3	WEATHER			G COMPANY LIMITED		
TIME	WORKING HE	WORKING I	HR	1	-	DURATION OF RAIN	RA	RAINNY/ CLOUDY /SUNNY			
DATE	2/7/2010										
DEPTH OF HO				COMMUNITY		LMC	LMC Camp, Lunsar				
DEPTH CASEL		65		GEOPHYSICS							
	AL BOUNDARIE	the second se	of the second state of the			REF. POINT	A25/S	2			
DEPTH OF	AL DOUNDARIE	S AND SAMP	DRILLING PR		1						
CONTACT ZON	NE		DRILLING PR	DCESS		DESCRIPTION OF FOR	MATION	YIELD	REMARKS (Drilling Methods		
EPTH									Including Change of Bit)		
LT IH	SAMPLE	FROM	то	SPEED (M/MIN)							
0	5	10:46	10:50	1.2	5 (0-6) Red 1	brown latertic soil					
				4	(0-0) Red - 1	brown latertic soll			(0 - 25)m Air Drilling With 10" DTI		
-											
5	10	10:59	11:05	0.625	(6-14) Light-yellowish clay soil				н		
10	15	11:25	11:30	1	(14 - 25) Pink	- brown completely wea	thered rock	Moist			
				-				110131			
15	20	13:54	14:10	0.3125		NA	1				
						16	-	Wet	"		
20	25	9:09	9:24	0.3333			-				
				0.5555		J		H20	(22 - 65)m Air Drilling with 6.5" DTI		
25	30	9:28	0.46	0.0770							
		9.20	9:46	0.2778	(25 - 40)m Ash	- gray moderately weat	hered rock	"	н		
30	25										
	35	9:49	10:06	0.2941	n			"			
35	40	10:09	10:25	0.3125	п						
								1			
40	45	10:29	10:44	0.3333	(40 - 65)m Gra	y slightly- fresh crystalli	ne rock	1.5L/S	п		
						y origina y nesh erystan	Ine TOCK	1.5L/S			
45	50	10:46	11:05	0.231							
				0.201			<u>, , , , , , , , , , , , , , , , , , , </u>	1.5L/S	H		
50	55	11:09	11:37	0.1700							
		11.05	11.57	0.1786	"			1.7L/S	8		
55	60	11									
	00	11:41	12:10	0.1724	11			1.4L/S			
60	65	12:15	12:44	0.1699	н			1.3L/S			
	Ph	Sta	tic Water Level		101	UIFER ZONE(S):					

Borehole Drilling Record

eophysics ref.1 A25/S2	No.		illing Company Limited 49 SOREHOLE RECORD		treet Sierra Leone , Freetown		BH status: Su Di	¥	X
		LMC 'S Camp, Luns			EDC/LMCBH-03	Nat. grid re	f.		
ommunity			Drill rig			Method	AIR		
illing contracto		EDAL			Super DTH	Operator	RAJU		
rilling start date		1/7/2010	Compl. date		3/7/2010		the second s		
EST PUMPIN	G		Date:		19/07/2010	Top of scre			r
namic WL *		m	Pump type			Static WL			1
tic WL *		m	Pumping rate (Q)		and the second	3/h Potential dr			1
wdown (s)		m	Duration		18	h Potential yie	eld		m³/1
					10.1	Death of h	auch ala à	65	
	nd level datum		Specific capacity (Q/s)		m³/h/m	Depth of be	Sienole ·	03	
SIZE		PROFILE		TIME/ DEPTH		AGRAM with AND DYNAMI	C WATER LEVEL	s	
DTH	5	Red-brown laterític se	oil	M/MIN	Q (l/min)	90 8	Conce	rete Sanitary Seal	
	10	Light-yellowish clay s	soil				Gravel P	ack	
	20 25	Pink-brown complete	ly weathered rock						
DTH	30 30 35 40	Ash -gray moderately	P	a	ge		4"	uPVC Screen Pipe	
	45 	50 Grsy slightly weathered -fresh rock	ed -fresh rock						
	60 60 65						— 4" uP	/C Plain Pipe Seal	
	70								E

EDAL DRILLING COMPANY LIMITED

BOREHOLE DEVELOPMENT FORM

PROJECT: LMC

Date: 3rd July, 2010

Community: LMC Camp, Lunsar

Geophysics Ref. No. A25/S2

Depth (m):

District:

<u>65</u>

Static Water Level (m): _____

Tot time of Developmt: 2Hrs

]	Гіте	Position	Yield	Pressure	Observations
From	То	of pipe BGL (m)		(bar)	Observations
09:49	10:19	60	85	220	Very dirty water with sediments flushed out
09 :19	11 :49	63	85	220	Clean and clear water flushed out

AQUIFER DATA SHEET

Community: LCM Camp, Lunsar

Geophys. Ref. No. A25/S2

Borehole No.

Height of datum above ground level (m): 0.6

Static level below datum (m): 3.99

Pump setting (m): 47

Date: 21/07/2010

Tested by: Obeng

Borehole depth (m): 65

				DISCHAR	GE			
			RECOVERY					
fime (hr)	Time (min)	Water level Below datum (m)	Draw down (m)	Discharge rate(l/s)	Observation	Time (hr)	Water level Below datum	Draw down(m)
	0	3.99	0				20.16	16.17
	1	5.02	1.03				17.77	
	2	6.31	2.32				17.26	13.78
	3	7.21	3.22	1.91			16.66	13.27
	4	7.27	3.28			-	16.14	12.67
	5	7.34	3.35				15.69	12.15
	6	7.42	3.43		and the second se		15.09	11.7
	7	7.53	3.54			_	13.21	11.22
	8	7.69	3.7				14.72	10.73
	9	7.81	3.82				14.25	10.26
	10	7.93	3.94	1.44			13.88	10.05
	12	8.17	4.18				13.46	9.89
	14	8.31	4.32				13.13	9.47
	15	8.38	4.39		and a second		12.94	9.14
	20	8.57	4.58	1.14			12.62	8.95
	25	8.76	4.77				12.57	8.63
	30	8.96	4.97				12.57	8.58
	35	9.14	5.15				12.44	8.45
	40	9.35	5.36				12.18	8.28
	45	9.56	5.57	2		+		8.19
	50	9.74	5.75				<u>12.09</u> 12.00	8.10
	55	9.92	5.93					8.01
	60	10.01	6.02				11.89	7.90
	70	10.29	6.3				<u>11.78</u> 11.51	7.79