EDAL DRILLING COMPANY LTD.

GEOPHYSICAL SURVEY REPORT

NATIONAL YOUT FARM - MASIAKA

SUBMITTED TO:

NATIONAL YOUTH FARM

35^A Clewry's Lane, off Main Motor Road, Congo Cross, Freetown, Sierra Leone Cell Numbers: 076 601 550 / 076 204 816 Phone No. 230745 Email: edalltd@gmail.com

TABLE OF CONTENTS

1.	INTRODUCTION	2
2.	BACKGROUND/GEOLOGY OF POJECT AREA	
3.	FIELD WORK	3
3.1	Reconnaissance Survey	3
3.2	Geophysical Survey	3
3.2.1	Vertical Electrical Sounding (VES)	4
4.	DATA ANALYSIS AND INTERPRETATION	5
Tak	ole 1. Schlumberger Array VES Data at Point A	5
Fig	ure 1.Schlumberger Array VES Curve and Model at Point A	6
Fig	ure 2.Pseudo-section Showing Apparent Resistivity and Layer Thicknesses at point A	7
Tab	ble 2. VES Data at point B	8
Fig	ure 3: Schlumberger Array VES Curve and Model at point B	9
Figu	ure 4. Pseudo-section Showing Apparent Resistivity and Layer Thicknesses at point B	10
Tab	le 3. VES Data at Point C	11
Figu	ure 5: Schlumberger Array VES Curve and Model at point C	.12
Tab	le 4. List of VES Points in order of Preference for Drilling	.13
5.	CONCLUSIONS AND RECOMMENDATIONS	.14

1. INTRODUCTION

Geological and Hydrogeological/ Geophysical surveys were conducted at the Masiaka Youth Farm on the 25th June, 2015 to explore the groundwater potentials of the area.

These studies among others, provided enough data and information used in assessing the possibility of striking groundwater in the project area.

This report therefore documents the work carried out during the investigations at the site.

2. BACKGROUND / GEOLOGY OF PROJECT AREA

The project area lies within the Bullom sedimentary formation.

The Bullom sedimentary Formation is comprised of unconsolidated to poorly consolidated sediments occupying the coastal plains of Sierra Leone. The deposits extend up to 50k inland and are found at heights up to 40m above present sea level (Culver and Williams, 1979). Although outcrop of the Bullom Group are rare and generally poor, the available evidence suggest a lateral variable sequence of poorly consolidated, near horizontal, often iron-stained gravels, sands, clays with occasional intra- formational laterites.

However, groundwater potential is very high in the Bullom Sedimentary Formation.

3. FIELD WORK

T

3.1 Reconnaissance Survey

The aim of the reconnaissance survey was to select suitable area (s) for geophysical survey; considering the geological/hydrogeological, environmental and other physical conditions.

The reconnaissance survey included the following:

Geomorphological Survey of the Area

This includes the landscape and other physical features.

The project area is relatively flat with minor elevated grounds in the immediate surroundings. The Geomorphology of the area therefore suggests high groundwater potentials.

 Geological Survey to Determine the Formation of the Area and to Identify Possible Features.

The project area is overlain by loose sedimentary materials which holds high groundwater potentials .

Trees within the area are fresh with green leaves indicating that they are getting direct water intake at a more or less shallow depth.

Note that trees/plants are essential component of the Hydrological Cycle.

Selection of Traverse Line for geophysical Survey

The traverse line for resistivity survey was selected on the basis of geomorphologic and geological/hydrogeological features as well as the location of the project area. There were no visible strike directions of the geological formation of the area due to weathering and other activities.

Point for the Vertical Electrical Sounding (VES) was selected based on the location of the project area, considering the environmental and other physical conditions and was marked with a peg for identification.

3.2 Geophysical Survey

The Geophysical survey consisted mainly of Electrical Resistivity i.e. Vertical Electrical Sounding (VES) using the ABEM SAS 1000 Terrameter system.

3.2.3 Vertical Electrical Sounding (VES)

Vertical Electrical Sounding (VES) was carried out with the aim of determining the formation resistivities and the depth to bedrock, as well as the possibility of finding water bearing formations or aquifer(s) at depth with the corresponding thicknesses of such aquifer(s). The Schlumberger electrode configuration and the required procedures were used for the VES at the three proposed drilling points (i.e. Points A, B \leq C)

4.0 DATA ANALYSIS AND INTERPRETATION

The Vertical Electrical Sounding (VES) data and their corresponding curves are presented below:

Table 1: Schlumberger Array VES Data at Point A

Client: Nationa	l Youth Farm		Community: Masiaka		
Project: Geophys	sical Survey		Sounding Number: 1 (A)		
District: Norther			GPS Coordinate East: 0745122		
Date: 25 th June	e, 2015		GPS Coordinate North: 0940056 Elevation: 42m		
Field Operator: N	Aorlai Kanu				
	Schl	umberger A	rray VES Field Data		
No.	AB/2	MN	Apparent Resistivity (ohm-m)		
1	4	0.8	982.18		
2	5	0.8	983.7		
3	7	0.8	1020		
4	4 10		1379		
5	5 15		1038		
6	6 20		1001		
7	30	1.5	4263		
8	40	7.6	394.1		
9	50	7.6	348.4		
10	70	7.6	305.7		
11	80	14	323.5		
12	12 100 14 282.5				

The VES data is first presented in the form of a table (as shown above) from which a graph of Apparent Resistivity (p_{a}) Vs half the Current Electrode Spacing (AB/2) is plotted.

Figure 1. Schlumberger Array VES Curve and Model at point A.

- 81

The data shows a two-layer subsurface in which $p_1 > p_2$. The unusually low apparent resistivity registered in layers 1 and 2 are indicative of the presence of pore electrolyte, possibly groundwater within the sedimentary top layer and underlying sedimentary formations. The equivalent layer thicknesses are 3.83m and 4.68m respectively.

Figure 2. Pseudo - section Showing Apparent Resistivities and Layer Thicknesses at point A.

Table 2: Schlumberger Array VES Data at Point B.

Client: Nationa	l Youth Farm		Community: Masiaka		
Project: Geophys	ical Survey	the states of	Sounding Number: 2 (B)		
District: Norther	n Province	~	GPS Coordinate East: 0745392		
Date: 25 th Jun	e, 2015		GPS Coordinate North: 0940113		
Field Operator: N	Iorlai Kanu		Elevation: 43m		
	Schl	umberger A	rray VES Field Data		
No.	AB/2	MN	Apparent Resistivity (ohm-m)		
1	4	0.8	2019		
2	5	0.8	1984		
3	7	0.8	1732		
4 10 1.5		1.5	1587		
5 15 1.		1.5	1071		
6 20 1.		1.5	1195		
7 30 1.5		1.5	788.6		
8	40	7.6	763.2		
9	50	7.6	924.9		
10	70	7.6	1079		
11	80	14	1309		
12	100	14	1342		

The VES data is first presented in the form of a table (as shown above) from which a graph of Apparent Resistivity (p_{a}) Vs half the Current Electrode Spacing (AB/2) is plotted.

Figure 3. Schlumberger VES Curve and Model at Point B.

-

(eur

T

The data shows a two-layer subsurface in which $p_1 > p_2$. The unusually low apparent resistivity registered in layers 1 and 2 are indicative of high groundwater potential of the area. The equivalent layer thicknesses are 6.34m and 28.9m respectively.

Figure 4 . Pseudo - section Showing Apparent Resistivities and Layer Thicknesses at point B.

I

Table 3: Schlumberger Array VES Data at Point C.

Client: Nationa	al Youth Farm		Community: Masiaka		
Project: Geophy	sical Survey		Sounding Number: 3 (C)		
District: Norther		and the second	GPS Coordinate East:0745678GPS Coordinate North:0939769Elevation:39m		
Date: 25 th Jun	2 14				
Field Operator: N	and the second se				
BL-		umberger A	rray VES Field Data		
No.	AB/2	MN	Apparent Resistivity (ohm-m)		
1	4	0.8	1546		
2	5	0.8	1514		
3	7	0.8	1663		
4 10		1.5	1761		
5 15 1.5			1330		
6 20		1.5	1265		
7	30	1.5			
8	40	7.6	629.3		
9	50		416.2		
10		7.6	378.2		
10	70	7.6	307		

The VES data is first presented in the form of a table (as shown above) from which a graph of Apparent Resistivity (p_{a}) Vs half the Current Electrode Spacing (AB/2) is plotted.

Figure 5. Schlumberger Array VES Curve and Model at Point C.

No.	VES POINT	LAYER	THICK NESS (m)	DEPTH (m)	APPARENT RESISTIVITY (Ohm-m)	POSSIBLE WATER ZONES (M)	RANKING	MAX DRILLING DEPTH (M)
1	A	1 2 3	3.83 4.68	3.83 8.5	858 3123 249	10-25 30-75	1 st	80m
2	В	1 2 3	6.37 28.9	6.37 35.3	2002 642 2127	10-20 30-70	3 rd	80m
3	С	1 2 3	2.93 5.32	2.92 8.24	1379 269 279	10 -70	2nd	70m

List of VES Points in Order of Preference for Drilling Table 4:

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on the analyses of the result, and in line with the aims of the study, the conclusions are as follows:

- > The project area lies within the Bullom Sedimentary formation.
- Groundwater potential could be high in the Bullom Formation
- The potential water zones are found between 10- 25m and 30- 75m at point A.; 10m – 20m and 30m-70m at point B.; 10m – 70m at point C respectively.
- It is premature, however, to estimate quantities, which could only be determined during test drilling and test pumping.
- The borehole location was selected in accordance with both national and international borehole siting guidelines.

Recommendation

In this regard, it is recommended that;

- Drilling should be carried out at the selected points (i.e. A, B \$ C) in order of preference to confirm the existence of groundwater.
- The borehole must be constructed using the correct and standard materials such as standard uPVC screens and plain casings, well sorted gravels etc. for water quality and high yield.
- The maximum drilling depth should be 80m at point A, 80m at point B and 70m at point C respectively for sustainable productivity and high yield of the borehole.
- Both physico-chemical and bacteriological test should be carried out on the borehole water sample after completion.

REPORT SUBMITTED BY:

Morlai Kanu Geologist/ Field Operator Cell: +232 76 950 032